HEAT & POWER OVERVIEW

This overview gives a composite list of Research & Technology Development (RTD) activities identified in the technology modules, presented by technology:

Pulverized Combustion (PC)

- Further improvements by increasing live steam temperature to 620°C-650°C using recently developed ferritic steels.
- Further improvements by increasing live steam temperature to 700°C achieving more than 50 % efficiency using superalloy materials.
- Further increase of live steam pressure to 330 365 bar (application of ultra-supercritical cycles)
- > Full exploitation of primary NOx reduction potential.
- > Co-firing of solid fuels together with wastes and residues.

Fluidized Bed Combustion (FBC)

- > Handling of solid fuel and of ashes and residues (AFBC & PFBC).
- > Further scale-up of maximum unit size to 500 MWel.
- Optimization of FBC design and operation to improve economic and environmental performance.
- Dedicated demonstration of FBC for decentralized production of heat and power from locally available low-quality fuel.

Natural Gas based Combined Cycle Gas Turbine (CCGT)

- Reduction of emissions (NOx) via development of new burner concepts.
- Increase of gas turbine efficiency (increase of inlet temperature & Pressure and minimization of aerodynamic losses).
- Application of new, improved gas turbine blade cooling technologies.

Integrated Gasification Combined Cycle (IGCC)

- Lower costs (higher specific power output, standardization, modular systems, etc).
- Higher efficiency of up to 55 % (further gas turbine development, hot gas cleaning, etc.)

- Improved availability.
- > Long-time operation experience.
- Use of wastes as feedstock.
- Demonstration of other types of IGCC i.e. air-blown gasifier IGCC.

Gas turbines (GT)

- Increase of gas turbine inlet temperatures, from 1200°C to 1300-1400°C and above.
- Reduce aerodynamic losses.
- Lower NOx emissions.

For these goals RTD is necessary in the following areas:

- Performance of materials for blades and vanes.
- Application and improvement of thermal barrier coating.
- Application of advanced cooling techniques (e.g. steam cooling).
- Further low NOx burner developments.

Pressurized Fluidized Bed Combustion (PFBC)

- > Further scale-up of maximum unit size to 200-500 MWel.
- > Application of hot gas filtration.
- > Improved of gas turbine blade & vane coatings.
- > Use of advanced (supercritical) steam conditions.
- > Improved process by increasing the flue gas temperature.
- > Co-firing of biomass and wastes.
- Reduced bed erosion (activities to be carried out on research level and later to be demonstrated

Pressurized Pulverized Combustion (PPC)

- Improved slag separation in the boiler.
- Improved slag separation from hot flue gas.
- > On-line measurement of flue gas contamination.
- > Optimization of liquid-ash-resistant ceramics.
- Successful operation of demonstration plant.

Fuel Cells (FC)

Phosphoric Acid Fuel Cell (PAFC)

- > Improvement of lifetime operation.
- Improvement the sensitivity to the catalyst poison carbon monoxide

Proton Exchange Membrane Fuel Cell (PEMFC)

- Further development of inexpensive components and manufacturing methods (minimizing the platinum content).
- > Improve the sensitiveness to fuel impurities.
- > Making the catalyst layers more CO resistant

Molten Carbonate Fuel Cell (MCFC)

Further material research and improvement is needed to decrease the corrosion and increase the current density.

Solid Oxide Fuel Cell (SOFC)

- Increase of power output at reduced operating temperatures.
- > Achieve high robustness under tough operating conditions.
- > Improve performance and lifetime.
- > Further development of internal reforming and scale up
- Intensive RTD activities for auxiliary parts such as the heat exchanger, piping and pumps due to the high operation temperature.