

Ho Chi Minh City, Vietnam

# Biomass Energy Utilization & Environment Protection Commercial Reality and Outlook

2003

3:7(6,3

**Presented by** 

### Miro R. Susta

**IMTE AG Power Consulting Engineers, Switzerland** 

Co-authors Peter Luby, INGCHEM, Slovak Republic Dr. Sohif Bin Mat, Transtherm Sdn Bhd, Malaysia





### Content

Introduction Direct Combustion Biomass Gasification Anaerobic Digestion > Other Biomass related Fuels Commercial Aspects Summary - Conclusions





Introduction Direct Combustion Biomass Gasification Anaerobic Digestion > Other Biomass related Fuels Commercial Aspects Summary - Conclusions





'Rapid rate at which fossil and residual fuels are releasing CO<sub>2</sub> into the atmosphere has raised international concern and has spurred intensive efforts to develop alternative, renewable, sources of primary energy'

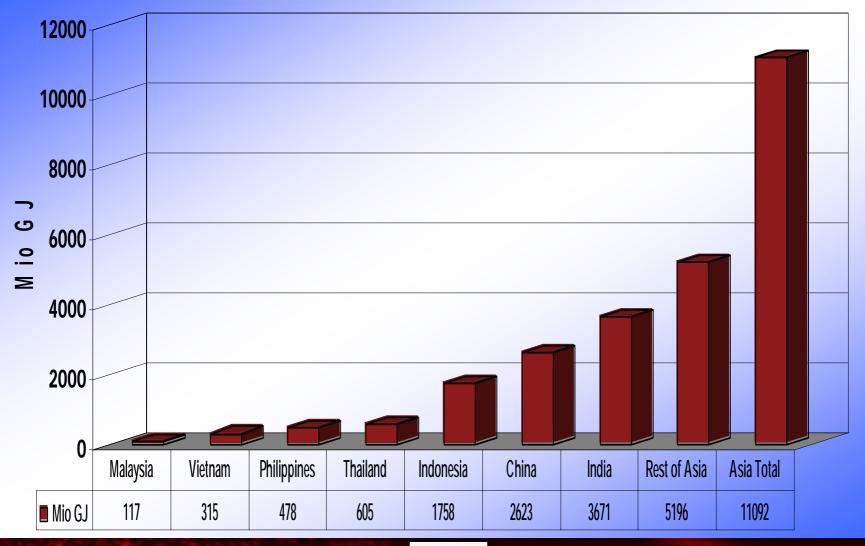




- Biomass absorbs the same amount of CO<sub>2</sub> in growing that it releases when burned as a fuel in any form.
- Biomass contribution to global warming is zero.
- Biomass fuels contain negligible amount of sulphur, so their contribution to acid rain is minimal.



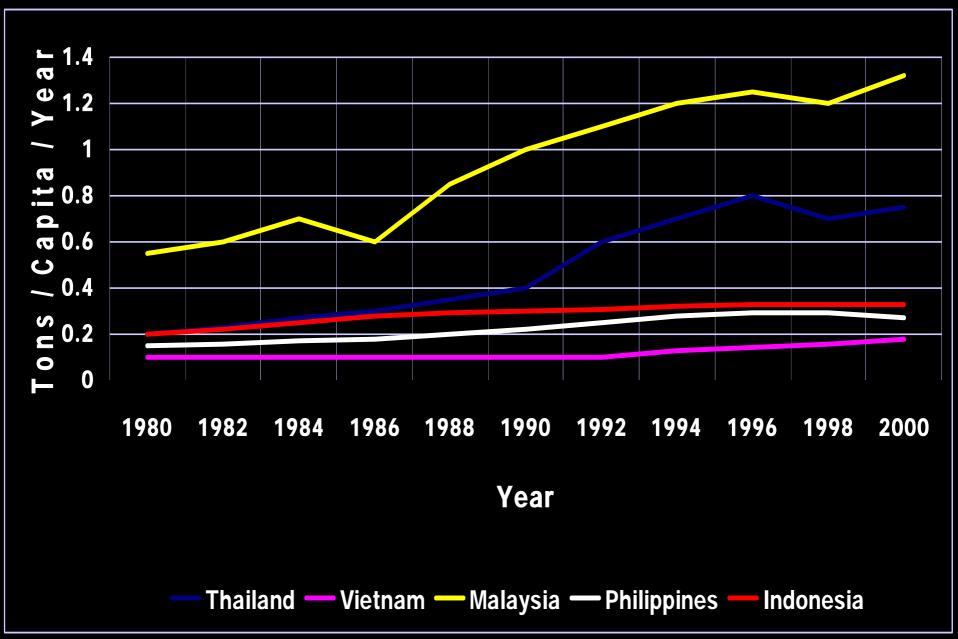



# **Typical biomass resources include:**

- The forest
- Waste from wood processing industry
- Agricultural waste
- Urban wood waste
- Wastewater & landfill
- Other natural resources (straw, peat, bagasse, etc.)






### **Biomass consumption in Asia**







### **CO production in SEA**

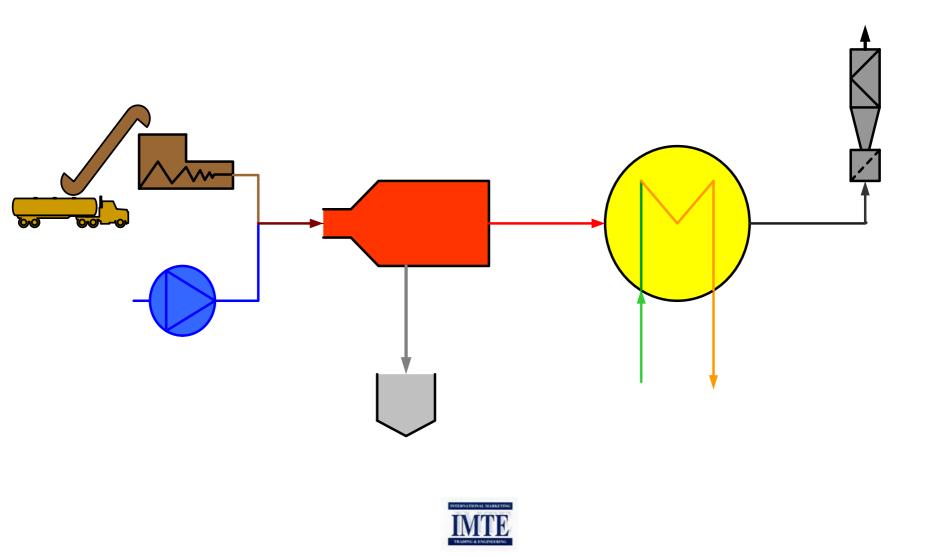




### **Biomass utilization technologies**

# Direct Combustion Gasification Anaerobic Digestion Methanol & Ethanol Production





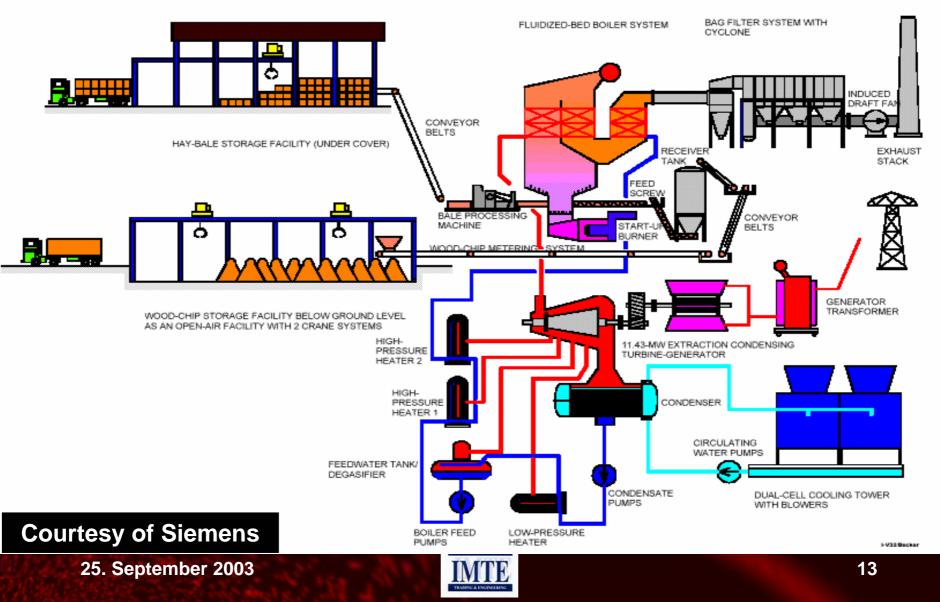

Introduction Direct Combustion Biomass Gasification Anaerobic Digestion > Other Biomass related Fuels Commercial Aspects Summary - Conclusions



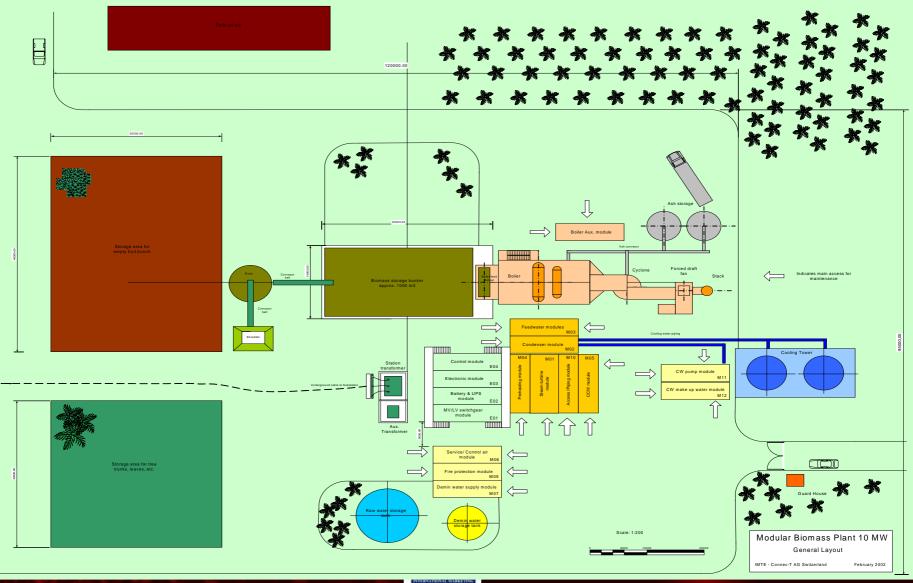


# Principal scheme of direct combustion system






### **Fixed bed combustion systems**


| System                  | Fuel size<br>mm                | Max.<br>Moisture<br>Content in<br>% | Fuel Supply      | Ash Removal      |
|-------------------------|--------------------------------|-------------------------------------|------------------|------------------|
| Static Grate            | Ø <b>100 x 300</b>             | 50                                  | Manual/automatic | Manual/automatic |
| Underscrew              | < 40x 30 x 15<br>>20 x 20 x 10 | 40                                  | Automatic        | Manual/automatic |
| Through Screw           | < ∅ 50 x 100                   | 40                                  | Automatic        | Automatic        |
| Inclined Grate          | < 300x100x50                   | 50                                  | Automatic        | Automatic        |
| Sloping<br>(moving) Bed | < 300x100x50                   | 50                                  | Automatic        | Automatic        |
| Suspension<br>Burning   | < 5 x 5 x 5                    | 20                                  | Automatic        | Manual/automatic |
| Spreader-<br>stocker    | < 40 x 40 x 40                 | 50                                  | Automatic        | Manual/automatic |

### **Typical Scheme of Biomass Fired Power Generation Plant**

FOWERICENASIA



### **Biomass Power Plant Layout**

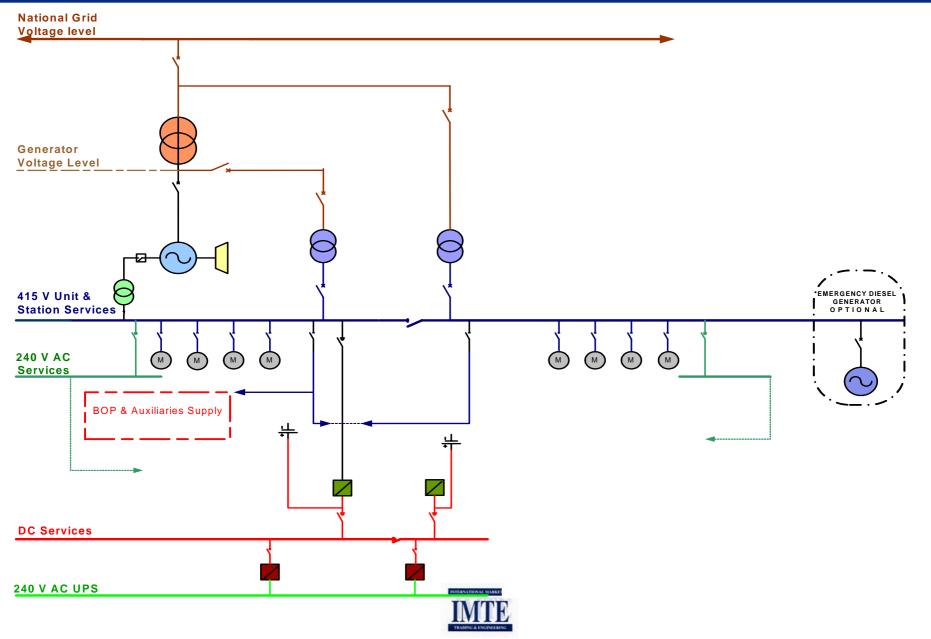


25. September 2003



FOWER-CENASIA




### **Oil Palm Biomass Waste Specifications**

Industrial Analysis of Mill Oil Palm Waste

|                       |            |       |        | ell     |       | -Shell   |       | Fibre       | Dry-Fibre |
|-----------------------|------------|-------|--------|---------|-------|----------|-------|-------------|-----------|
|                       |            |       |        |         |       |          |       |             |           |
| Volatile matter       | %          | 7     |        | '1      | 78.05 |          |       | 75.8        | 83.4      |
| Fixed carbon          | %          |       | 19.3   |         | 21.2  |          |       | 12.1        | 13.33     |
| Ash                   | %          |       | 0.7    |         | 0.75  |          |       | 3.0         | 3.27      |
| Moisture              | %          |       | 9      | .0      |       | -        |       | 9.1         | -         |
| Gross calorific value | MJ/ł       | ٢g    | 18     | .90     | 2     | 20.77    |       | 16.68       | 18.38     |
| Low calorific value   | MJ/ł       | ٧g    | 17     | .60     | -     |          | 15.42 |             | -         |
| Moisture Conter       | nt (%) and | Low   | Calori | fic Val | ue of | Mill Oil | Pa    | Im Waste    | (MJ/kg)   |
| Moisture              |            | Shell |        |         | Fibre |          |       | Bunch stalk |           |
| (%)                   | Pure       | C     | Dily   | Pur     | e     | Oily     |       | Pure        | Oily      |
| 10                    | 20.72      | 20    | ).93   | 19.6    | 68    | 20.72    |       | 17.58       | 18.84     |
| 20                    | 17.25      | 18    | 3.84   |         |       |          |       | -           | -         |
| 30                    | -          |       | -      | 10.7    | 78    | 11.35    |       | -           | -         |
| 40                    | -          | -     |        | 8.3     | 7     | 9.1      |       | -           | -         |
| 50                    | -          | -     |        | -       |       | -        |       | 7.54        | 8.16      |
| 60                    | -          |       | -      | -       |       | -        |       | 5.52        | 6.03      |



### **Typical Single Line Diagram**





Introduction Direct Combustion Biomass Gasification Anaerobic Digestion > Other Biomass related Fuels Commercial Aspects Summary - Conclusions





## **Biomass gasification**

- Stage I ⇒ Gasification process starts as autothermal heating of the reaction mixture. The necessary heat for this process is covered by the initial oxidation exothermic reactions by combustion of a part of the fuel
- Stage II ⇒ In the second pyrolysis stage, combustion gases are pyrolyzed by being passed through a bed of fuel at high temperature. Heavier biomass molecules distillate into medium weight organic molecules and  $CO_2$ .
- Stage III  $\Rightarrow$  Initial products of combustion, CO<sub>2</sub> and H<sub>2</sub>O are reconverted by reduction reaction to CO, H<sub>2</sub> and CH<sub>4</sub>. 25. September 2003 18

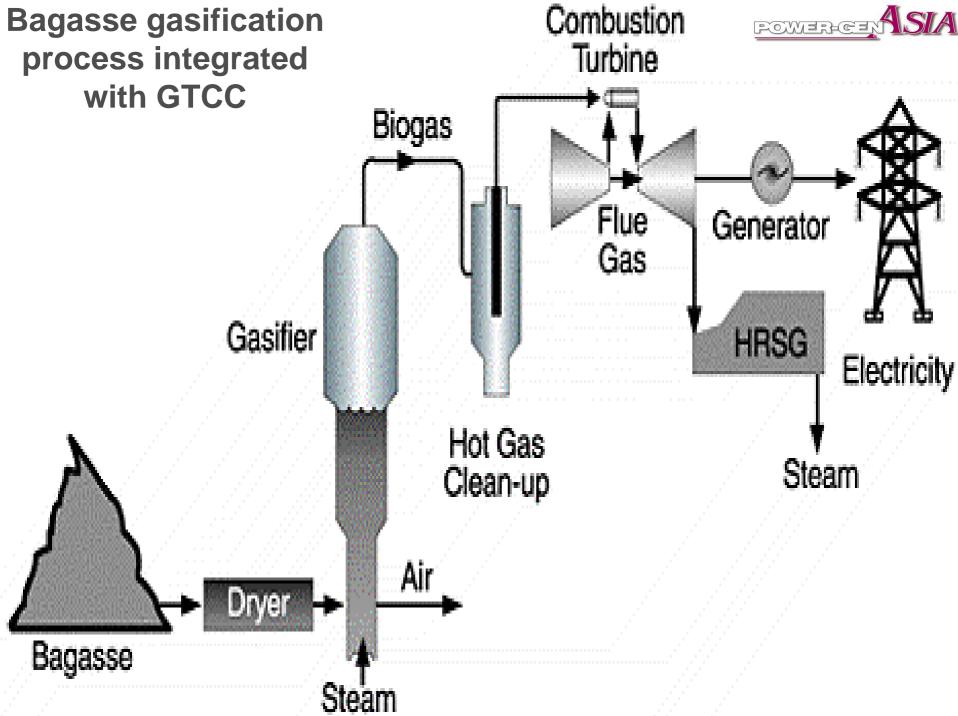


### **Biomass gasification**

| Gasification<br>Stage   | Reaction formula                                                 | (Reaction number) /<br>Reaction type | Reaction heat<br>kJ/kmol |
|-------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------|
| Stage I                 | C+½O <sub>2</sub> CO                                             | (1) Partial oxidation                | +110,700                 |
| Oxidation               | CO+½ O <sub>2</sub> CO2                                          | (2) CO oxidation                     | +283,000                 |
| and other<br>exothermic | C+O <sub>2</sub> CO <sub>2</sub>                                 | (3) Total oxidation                  | +393,790                 |
| reactions               | $C_6H_{10}O_5 xCO_2+yH_2O$                                       | (4) Total oxidation                  | >>0                      |
|                         | H <sub>2</sub> + <sup>1</sup> / <sub>2</sub> O2 H <sub>2</sub> O | (5) Hydrogen oxidation               | +241,820                 |
|                         | CO+H <sub>2</sub> O CO <sub>2</sub> +H <sub>2</sub>              | (6) Water-gas shift                  | + 41,170                 |
|                         | CO+3H <sub>2</sub> CH <sub>4</sub> +H <sub>2</sub> O             | (7) Methanation                      | +206,300                 |
| Stage II                | C <sub>6</sub> H <sub>10</sub> O <sub>5</sub> CxHz+ CO           | (8) Pyrolysis                        | <0                       |
| Pyrolysis               | C <sub>6</sub> H <sub>10</sub> O <sub>5</sub> CnHmOy             | (9) Pyrolysis                        | <0                       |
| Stage III               | C+H <sub>2</sub> O CO+H <sub>2</sub>                             | (10) Steam gasification              | -131,400                 |
| Gasification            | C+CO <sub>2</sub> 2CO                                            | (11) Boudouard reaction              | -172,580                 |
| (Reduction)             | CO <sub>2</sub> +H <sub>2</sub> CO+H <sub>2</sub> O              | (12) Reverse water shift             | - 41,170                 |
|                         | C+2H <sub>2</sub> CH <sub>4</sub>                                | (13) Hydrogenation                   | + 74,900                 |



# **Typical characteristics Typical characteristics of biomass fuels for gasification**


| Biomass<br>Fuel    | Moisture<br>% wet | Ash<br>% dry | Volatile<br>Matter<br>% dry | Bulk<br>density<br>kg/m <sup>3</sup> | Average<br>HHV MJ/kg<br>dry |
|--------------------|-------------------|--------------|-----------------------------|--------------------------------------|-----------------------------|
| Charcoal           | 2-10              | 2-5          | 5-30                        | 200-300                              | 30                          |
| Wood               | 20-40             | 0.1-1.0      | 70-80                       | 600-800                              | 20                          |
| Rice Husks         | 3-5               | 15-25        | 60                          | 100                                  | 15                          |
| Coconut<br>Shells  | 25                | 0.8          | 79                          | 400                                  | 20                          |
| 25. September 2003 |                   | IM           | <b>TR</b>                   |                                      | 20                          |



### Fuel requirements for different gasifier types

| Gasifier Type | Updraft | Downdraft | Open Core     | Cross draft |
|---------------|---------|-----------|---------------|-------------|
| Fuel          | Wood    | Wood      | Rice<br>Husks | Charcoal    |
| Size, mm      | 20-100  | 5-100     | 1-3           | 40-80       |
| Moisture, %   | <25     | <60       | <12           | <7          |
| Ash, %        | <6      | <25       | Approx.<br>20 | <6          |







Advanced integrated biomass gasification and combined heat and power concepts are promising but still not fully demonstrated.

The main difficulties are the requirements set by gas turbine manufacturers in adapting gas turbines to low BTU gases and to fulfil the gas quality specifications applicable for syngas utilization in gas turbines.





Introduction Direct Combustion Biomass Gasification Systems Anaerobic Digestion > Other Biomass related Fuels Commercial Aspects Summary - Conclusions





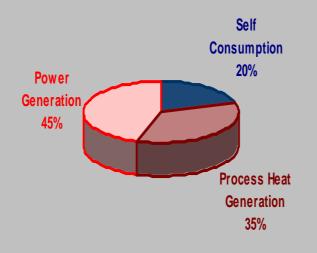
### **Anaerobic Digestion**

- Biogas was first discovered by Alessandro Volta in 1776 and Humphery Davy was the first to pronounce the presence of combustible gas Methane in the Farmyard Manure in as early as 1800.
- Anaerobic digestion is a biological process that produces a gas principally composed of methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) otherwise known as biogas.





### **Biogas Production**


- The biogas-production is normally in the range of 0.3 - 0.45 m<sup>3</sup> of biogas per 1kg of solid substances for a well functioning process with a typical retention time of 20-30 days.
- The lower heating value of this gas is about 22 MJ/m<sup>3</sup> = 0.55kg of light diesel oil.
- The amount of biogas produced varies with the amount of organic waste fed to the digester and temperature influences the rate of decomposition.

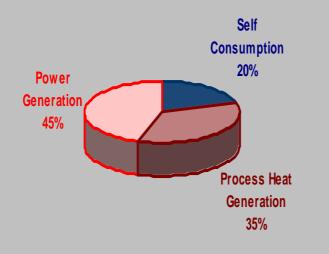


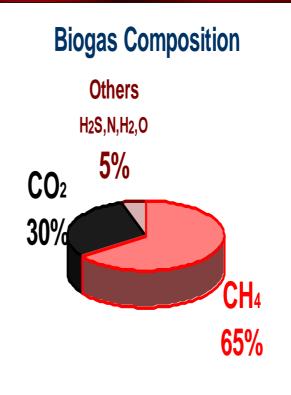


### Typical Biogas Utilisation

#### **Energy Utilization**




25. September 2003






### Typical Biogas Utilisation & Composition

#### **Energy Utilization**

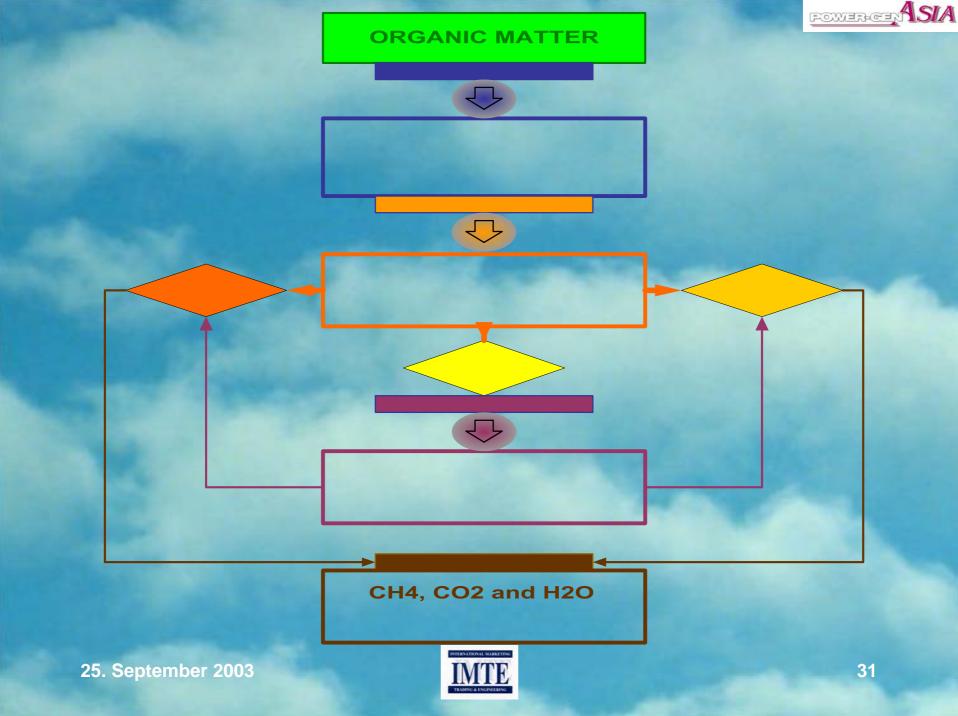








 Biogas can substitute for natural gas or propane in space heaters, refrigeration equipment, cooking stoves or other equipment


 Compressed digester gas can be used as an alternative transportation fuel





- Anaerobic digestion is a complex biochemical reaction carried out in a number of steps by several types of micro-organisms that require little or no oxygen to live.
- To promote bacterial activity, the digester must maintain a temperature of at least 20°C (ideal 25°C - 35°C).
- Higher digester temperatures, above 50°C 65°C, shorten processing time, allowing the digester to handle a larger volume of organic waste







### **Anaerobic digestion process parameters**

| Digestion<br>Process                                                    | Description                                              | Advantages                                                                                                | Disadvantages                         |  |
|-------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Dry                                                                     | Dry solids content of > 25-<br>30%                       | Compact, lower energy<br>input, better biogas quality<br>(<80% CH <sub>4</sub> ), maintenance<br>friendly | Restricted mixing possibilities       |  |
| Wet                                                                     | Wet Dry solids content of < 15%                          |                                                                                                           | Higher energy input,<br>lager reactor |  |
| Mesophilic                                                              | Digestion temperature between 25°C and 35°C              | Longer process time, slower rate                                                                          | Low energy input                      |  |
| Thermophilic                                                            | Digestion temperature between 50°C and 70°C              | Shorter process time,<br>higher degradation, faster<br>rate                                               | Higher energy input                   |  |
| Batch Substrate in closed<br>reactor during whole<br>degradation period |                                                          | Suitable for small plants<br>with seasonal substrate<br>supply                                            | Unstable biogas production            |  |
| Continuous                                                              | Reactor is filled<br>continuously with fresh<br>material | Constant biomass<br>production through<br>continuous feeding                                              |                                       |  |





Introduction Direct Combustion Biomass Gasification Anaerobic Digestion >Other Biomass related Fuels Commercial Aspects Summary - Conclusions





### **Other biomass related fuels**

- Ladfill Gas, typically 50% CH<sub>4</sub> and 45% CO2\*5-6 GJ per 1tonne of waste
- Organic waste and municipal sewage; 60% 70% HC<sub>4</sub>, an average energy content of about 22 MJ/m<sup>3</sup>, Average digestion retention time is 80 days at 20°C and 20 days at 50°C.
- Ethanol; corn, potatoes, beets, sugarcane, wheat, barley, and similar can be converted by fermen-tation process into ethanol. Fermentation takes place in the presence of air and is, therefore, a process of aerobic digestion.
- Methanol; Potential feedstock includes wood, agricultural residues and also natural gas. Methanol does not have all the environmental benefits.



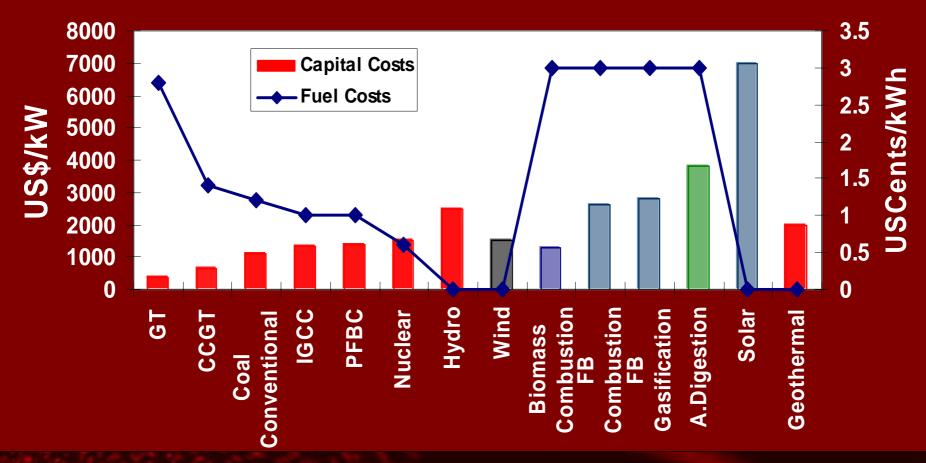


Introduction Direct Combustion Biomass Gasification Systems Anaerobic Digestion **Other Biomass related Fuels** Commercial Aspects Summary - Conclusions





### **Comparison between gasification systems**


| Туре | Technology                        | GT<br>Power<br>Output<br>MWe | ST<br>Power<br>Output<br>MWe | Fuel<br>Input<br>Ton/hour | Specific<br>Costs<br>US\$/kW |
|------|-----------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|
| FBC  | Fluidized<br>Bed<br>Combustion    | 0                            | 5                            | 5-10                      | 2600                         |
| FBG  | Fluidized<br>Bed<br>Gasification  | 3.3                          | 1.7                          | 4-8                       | 2800                         |
| ADB  | Anaerobic<br>Digestion-<br>Biogas | <1.0                         | < <b>0.9</b> <sup>1)</sup>   | <b>2.5</b> <sup>2)</sup>  | 3000-<br>4500                |

<sup>1)</sup> 0.9 MWert Available Heat Energy Assumptions: Biomass LHV=8 MJ/kg. 35% Power / 45% Heat Generation / 20% Internal Consumption

INTERNATIONAL-MARKETING



### Specific Capital Costs vs. Fuel Costs for Miscellaneous Power Generation Systems







Introduction Direct Combustion Biomass Gasification Systems Anaerobic Digestion **Other Biomass related Fuels** Commercial Aspects Summary - Conclusions





Numerous biomasses fuelled cogeneration plants are already in operation worldwide.

Many of the more than 2.5 billion people who live without reliable electricity inhabit areas where large amounts of biomass are available for power generation.

Small size distributed biomass power plant systems can provide them with reliable power and thermal energy for heating and cooling purposes.

However, the real environmental benefit of biomass utilization will come when we can use large amounts of biomass-based fuel to generate electricity, thereby considerably reducing consumption of fossil fuels.





# **Thank You**

imteag@attglobal.net

### www.imtegolf.ch

Technical Paper ADVANTAGES OF COMBINED WIND-BIOGAS ENERGY UTILIZATION FOR DISTRIBUTED POWER GENERATION will be presented by IMTE AG at Powergen International 2003 in Las Vegas, USA 9. December 2003

25. September 200

