Supercritical and Ultra-Supercritical Power Plants –

SEA's Vision or Reality?

Miro R. Susta IMTE AG Power Consulting Engineers Switzerland

> Khoo Bo Seong Tronoh Consolidated (M) Bhd Malaysia

Fuel Share of World Electricity Generation

World Energy Supply by Fuel 1970-2020

World Energy Supply by Fuel 1970-2020

World Recoverable Coal Reserves

Powergen Asia 2004

IMTE AG

World Coal Consumption

Coal Share of World Energy

Conventional, SC and USC technology is commercially available in wide range of size.

SC & USC technology offers higher efficiency and consequently lower specific flue gas throughput resulting in much cleaner electricity generation.

Conventional technology provides greater coal flexibility

Higher temperatures encountered in SC & USC units' makes corrosion more critical, thus coals with slugging or corrosion potential are less suitable for SC & USC plants.

State-of-the-art SC power plants have an efficiency of about 46% and satisfy current emission standards worldwide.

Capacity of SC & USC Power Plants Worldwide

Comparison SC - USC vs. Conventional

Plant Type	Price US\$/ kW	Steam Pres. MPa	Steam Temp. °C	Auxiliary Cons. %	Eff. %	CO ₂ g/kWh	SO ₂ g/kWh)
Conventional	850	165	538 / 538	4-6	< 40.0	≈ 855	≈ 2.4
580°C - SC	1050	290	580 / 580 / 580	5-7	> 42.0	≈ 780	≈ 2.2
700°C - USC	1100	365	700 / 700 / 700	6-8	> 48.0	≈ 710	≈ 2.0

Steam Pressure - Temperature & Material Development

Live ste	am		What	
Pressure MPa	Temperature °C	When		
<25.0	<520	Since early 60's	X20	
<30.0	<593	Since late 80's	P91 9%Cr	
<33.0	<620	Start 2000	P92 NF616	
35.0-47.0	700-720	Start 2010	Super Alloys	

Materials for SC-ST Applications

Steam temperature	>600°C	538°C		
Rotor	New 12 Cr forging	Cr-Mo-V forging		
Inner HP casing	No 1 Cr-Mo-V-B cast steel	1 ¼ Cr – ½ Mo cast steel		
Inner IP casing	12 Cr cast steel	1 ¼ Cr – ½ Mo cast steel		
Outer casing	2 ¼ Cr – 1Mo cast steel	1 ¼ Cr – ½ Mo cast steel		
Rotating blade	Refractory alloy (R-26)	12 Cr forging		
Main steam stop valve	9 Cr - 1 Mo forging	2 ¼ Cr – 1Mo forging		
Main steam governing valve	9 Cr – 1 Mo forging	2 ¼ Cr – 1Mo forging		

Selected SC & USC Power Plants

No	Power Plant Name	Country	Output (MW)	Live Steam (MPa / °C / °C)	Efficiency (%)	Fuel	Commercial Operation
•	Matsuura	Japan	1000	25.5 / 598 / 596		PC	1997
2	Haramashi	Japan	1000	25.9 / 604 / 602		PC	1998
3	Tachibana-Wan-2	Japan	1050	26.4 / 605 / 613	47.0	PC	2001
4	lsogo 1 & 2	Japan	2 x 500	24.5 / 600 / 600	46.0	PC	2001
5	Hitachinaka	Japan	1000	24.5 / 600 / 600		PC	2003
6	Torrevaldaliga	Italy	6 x 660	25.0 / 600 / 610	45.0	PC	2006
7	Yuhuan	PR China	2x1000	25.0 / 600 / 600		PC	2008
8	Niederaussem	Germany	1000	27.5 / 580 / 600	45.2	L	2002
9	Nordjyllaend 3	Denmark	410	29.0 / 582 / 580	47.0	PC	1998
10	Misumi 1	Japan	600	25.0 / 605 / 600	46.0	PC	2001
1	Tomato Atsuma 4	Japan	700	25.0 / 600 / 600		PC	2002
2	Skaerbaek 3	Denmark	410	29.0 / 582 / 580	49.0	NG	1997
3	Nanaoota 2	Japan	700	25.5 / 597 / 595		PC	1998
4	Tsuruga 2	Japan	700	25.5 / 597 / 595		PC	2000
\$	Avedore 2	Denmark	450	30.0 / 580 / 600	49.7/48.2/ 45.0	NG/PC/BS	2001

USC Power Plant Avedore - Denmark

SC Power Plant Misumi - Japan

Niederaussem

Tachibana-Wan Power Station

Isogo Power Station

SEA Power Generation Fuel Split 2004

SEA Power Generation Capacity 2004

SEA Power Generation Capacity 2004

Hard Coal Management in Asia

Coal Savings

Operational Costs savings

SC & USC Power Generation Capacity 1956-2004

SC & USC Power Generation Capacity 1995-2004

Conclusions

- Advanced SC & USC technology has substantial potential to improve the efficiency of PC power plant and to reduce the harmful impacts on the environment.
- Many Asian countries have already large capacity for SC & USC components manufacturing.
- SC power plants have already attained similar or even higher availability as conventional power plants.
- Cost patterns indicate a rapid decline in the average cost of power generation from SC & USC power plants.
- Igher construction costs are well balanced by lower fuel costs.
- SC & USC technology offers better operational dynamics at all loads and higher thermal efficiency at low loads.

Constraints

- SC & USC technology has to become economic against the alternative technologies such as conventional and NG-fired CCGT power plants.
- Ni base super-alloys are needed for higher temperatures.
- Igher strength materials are needed for upper water walls of boilers.
- Setter understanding of maintenance needs of the USC boiler & ST and related auxiliary systems is essential for long-term, reliable operation.

Coal based SC power generation technology is matured and advanced technique that can be favorably compared with well proven conventional power generation technology.

USC takes all advantages of well proven SC technology and is continuously build-up on this strong SC foundation.

Powergen Asia 2004

IMTE AG

In the medium to long term, as NG and fuel oil become a more scarce fuel and prices increase, and in conjunction with further economic improvements in clean coal technologies, SC & USC technology can expect to receive a renaissance as a feasible option for new large scale coal fueled power generation plants.

There is no solution capable meeting of our all future energy requirements.

Instead the answer will come from a family of diverse New Technologies which will have an impact on everything — from environmental quality to costs that consumers will ultimately have to pay.

Thank You.